Positivity Conditions for Quartic Polynomials
نویسندگان
چکیده
منابع مشابه
Splitting of Quartic Polynomials
For integers r, s, t, u define the recursion A(n + 4) = rA(n + 3) sA(n + 2) + tA(n + 1) uA(n) where the initial conditions are set up in such a way that A(n) = a" + ß" + y" + S" where a, ß, y, S are the roots of the associated polynomial f(x) = x* rxi + sx2 tx + u. In this paper a detailed deterministic procedure using the A(n) for finding how f(x) splits modulo a prime integerp is given. This ...
متن کاملNewton’s Method for Symmetric Quartic Polynomials
We investigate the parameter plane of the Newton’s method applied to the family of quartic polynomials pa,b(z) = z 4 +az + bz +az+ 1, where a and b are real parameters. We divide the parameter plane (a, b) ∈ R into twelve open and connected regions where p, p′ and p′′ have simple roots. In each of these regions we focus on the study of the Newton’s operator acting on the Riemann sphere.
متن کاملA positivity conjecture for Jack polynomials
We present a positivity conjecture for the coefficients of the development of Jack polynomials in terms of power sums. This extends Stanley’s ex-conjecture about normalized characters of the symmetric group. We prove this conjecture for partitions having a rectangular shape.
متن کاملPositivity of Turán determinants for orthogonal polynomials
The orthogonal polynomials pn satisfy Turán’s inequality if p 2 n(x)− pn−1(x)pn+1(x) ≥ 0 for n ≥ 1 and for all x in the interval of orthogonality. We give general criteria for orthogonal polynomials to satisfy Turán’s inequality. This yields the known results for classical orthogonal polynomials as well as new results, for example, for the q–ultraspherical polynomials.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 1994
ISSN: 1064-8275,1095-7197
DOI: 10.1137/0915035